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by  
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1. Introduction 

A s y s t e m a t i c  m a t h e m a t i c a l  s t u d y  of the e q u a t i o n s  of m o t i o n  of the 
a e r o p l a n e  w a s  i n i t i a t e d  by  B r o d e t s k y  [1]  in 1940.  A m o n g  the m a n y  m a n o e u v r e s  
the c o n s i d e r s  is  the s l o w  sp in ,  f o r  wh ich  the d e v e l o p s  an  a p p r o x i m a t e  
t h e o r y  b a s e d  on n e g l e c t i n g  s m a l l  t e r m s  in the  e q u a t i o n s  of m o t i o n .  T h e  
m a g n i t u d e  of a n y  t e r m  is  e x p r e s s e d  a s  a p o w e r  of s in  7, w h e r e  3' is the 
a p p r o p r i a t e  g l i d i n g  a n g l e .  In a f i r s t  a p p r o x i m a t i o n ,  on ly  t e r m s  of g r e a t e s t  
m a g n i t u d e  a r e  r e t a i n e d  in e a c h  e q u a t i o n .  T h e  s o l u t i o n  so  o b t a i n e d  m a y  b e  
i m p r o v e d  by  p r o c e e d i n g  to a s e c o n d  o r  h i g h e r  a p p r o x i m a t i o n .  

B r o d e t s k y ' s  m e t h o d ,  e x p r e s s e d  in c u r r e n t  n o t a t i o n ,  f o r m s  the b a s i s  of  
the p r e s e n t  p a p e r .  H i s  t h e o r y  of the s l o w  s p i n  s e r v e s  a s  an  i n t r o d u c t i o n  
to an  a p p r o x i m a t e  t h e o r y  of the f a s t  o s c i l l a t o r y  s p i n  in wh ich  the a n g u l a r  
v e l o c i t y  in p i t ch  is  a s s u m e d  s m a l l  c o m p a r e d  wi th  the a n g u l a r  v e l o c i t i e s  
in r o l l  and  y a w .  

2. Equations of Motion 

For simplicity, it is assumed throughout this paper that all controls are 
centralised. The effects of control movements on spin entry and recovery 
have been investigated in detail with the aid of a digital computer by Scher 
and others [2]. 

The equations of motion of a rigid aircraft, referred to principal axes 
through the centre of gravity, and including all the terms of possible 
significance in the spin, may be written in non-dimensional form as fol- 
lows ...... 

fl - rv + qw = [ v '2 (CL0 w 

9 - pw + ru = v'y vv + k cos @ sin 6, 

1 r2 
vr qu + pv : - ~v (CL0 cos ~0 + CD0 sin~0) + V'Zw6W + 

+~cos Ocos 6, 

( Ir~ ~ivw I~ /~I v i p_ P -- v 
- A'qr = v' v + +-- + 6w +-- 9, 

\iA iA i A / iA i A 

m mq ql m ,  
- B ' r p  = v '  w 6 w + - -  + - - * ,  

\i B i B  i B 

~_~n v np nr t n~ 
- C ' p q  v '  v + p = -- +--r +--9 

\ic iC i C ic 

These equations are obtained from Brodetsky's paper 

sina 0 - Cn0 cosa0) +v'x 6w - [ sin 0, (i) 

(2) 

(3) 

(4) 

(5) 

(6) 

[i], after adding 
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certain terras and changing the notation. The variable 6w, 
is used for convenience in equations (3) and (5). 
In general, 

r a t h e r  than w, 

W = W o + 6W, 

where the suffix 0 refers to the initial conditions. The non-dimensional 
factors v' and v '2 in equations (I) - (6) represent changes in the aerodynamic 
forces and moments due to a change in the resultant airspeed. When dis- 
cussing aircraft manoeuvres, it is not always possible to equate these 
factors to unity. 

The kinematic equations are 

q : 0 COS r +~ COS 0 sin 6, (8) 

r : : S s i n 6 + r  r (9) 

3. Brodetskyrs Theory of the Slow Spin 

In Brodetskyrs equations ofmotion for the slow spin [I], time is dis- 
carded as the independent variable, the Eulerian angle ~ being used in- 
stead. Here, time is retained as the independent variable, although es- 
sentially we follow Brodetsky's method. 

Take CD0, assumed to be approximately 0, 25, to represent first order 
smallness (as previously mentioned, Brodetsky uses sin 7, the corresponding 
quantity in his notation). Using the O notation to denote orders of mag- 
nitude expressed in powers of CD0, assume 

O(CLo ) = O, O(k) = O, O ( A ' )  = O(B ' )  = O, O(C ' )  = 1, 

o(~) =-2, 0(x w) =0(yv) =~ =o, 

0 ( I v / i A )  : 0, 0 ( l r / i A )  = - i ,  0 ( m w / i B )  = 0, 

0 { m q / i  B) : 0, 0 ( n v / i c )  = 2.  

A t  the  s t a l l ,  the  t e r m s  c o n t a i n i n g  1_, np and  n r a r e  n e g l i g i b l e .  A l s o ,  
the terms containing i~, m,, n~ and Iv~ are ignored. We assume further 
t h a t  

0 ( v )  : 0 ( w )  : 0 ( S w )  = i ,  0 ( p )  : 0 ( q )  = 0 ( r )  = 0. 

Then 

V ~ ~ U  

and  

o (u) -- o. 

We now retain only the terms of greatest magnitude in each equation. 
Equations (I), (2), (3) and (6) become, respectively, 

= - k sin0, 

ru = ~ c o s  e sin3, 

i u 2 qu = ~ CL0 cos ~o - ~ cos 0 cos 6, 

(lO) 

(11) 

(12) 
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(13) 

In these equations, every t e r m  is of order zero; the equations there- 
fore represent a first approximation to the motion. Equations (7) - (13) 
may now be solved for the variables u, p, q, r~ 8, 6, $ as functions of time. 
The initial conditions are 

u=u0,  r = r 0 ,  r162 p = q =  

From equation (13), 

r=r 0 

and then from equation (ii), 

u = kcos @ sin ~/r 0. 

Substituting the initial conditions in (12) gives 

2 
= u 0 C~ cos ~ 0 / 2  cos 6o 

F r o m  e q u a t i o n s  (8) and (9) 

= q s in  r s e c  @ + r cos  6 s e c  @, 

(14) 

(15) 

and using equations (12) and (ii), this gives 

ur u 2 
= CLO COS ~0 - ~ COS @ COS 6 sill @ sec O+ k sill ~ cos ~. 

I 
�9 . ~ = ~ U CLo COS d O s in  r s ec  O = ( k / 2 r  o) CLO COS ~0 s in2  r (16) 

From equations (i0) and (14), 

i d 
r 0 dr (c~ @ sin ~) = - sin @. (17) 

From equations (8) and (12), 

lu2 (@ COS ~ + ~ COS 8 s i n  ~) u = ~ eL0 cos ~'0 - ~ cos @ cos ~, 

and substituting for ~ and u from equations (9) and (14) respectively, 

CLO ) 
( 2 k ~  eOS~oCOS e s i n 2 ~ c o s  ~ - 1  c o s e c  ~. ~=  r o r2 

0 

T h e n ,  f r o m  e q u a t i o n s  (17} and (18), 

-sin e sin 
1 d (cos @ sin ~) = 
r o d0 

Q I 

~kCL~ 1 r~ bro2 cos oos 0 sin oos r 

= sin @ sin,~I2 - 

cos  oz o cos  @ s in  2 ~ cos  
2 r  2 0 

CL0~ 
2r ~ cos % cos e sin~r cos . 

(18) 

(19) 
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In order to obtain a simple analytical solution of this equation it is as- 
sumed that 

CLO 2 
c o s  a c o s  0 s i n  ~ c o s  ~ ( ( 1 .  

2r 2 0 
0 

Then equation (19) becomes 

(20) 

de cos 0 cos r ~-~ = 2 sin 0 sin ~, 

o:F 

sin ~ = b / c o s 2 0 ,  

w h e r e  

b = sin ~0" 

Now from equation (14), 

u =F~b / to  c o s 0  

a n d  f r o m  e q u a t i o n  (16) ,  

= k b2CLo c o s  ~ o / 2 r o  cos40. 

F i n a l l y ,  f r o m  e q u a t i o n  (18) ,  

@ = - r 0 c o s e c  r = - r 0 c o s 2 0 / b .  

.'.tan 0 = - r 0~-/b, 

showing that the attitude angle O becomes more negative as time progresses. 
The remaining variables may now be expressed as functions of time, and 

the main features of the incipient slow spin are demonstrated. The theory 
breaks down when -8 becomes too large, since the assumption (20) is 
equivalent to cos 9 ~- i. 

The spin is slow, since r 0 is of order zero, Taking r 0 = I, the num- 
ber of turns per minute is 

60 60% sO 

27r~ 2 ~r/~ s 

' i00 f.p.s, and t~ = 16 (of order -2). assuming V 0 

Since a typical small aeroplane has a wing semi-span s of 15 or 20 feet, 
the theory predicts a spin of three or four turns per minute, as stated by 
Brodetsky. 

4. The Fast  Spin 

R e s u l t s  f r o m  f u l l - s c a l e  s p i n n i n g  t r i a l s  [ 3 ] ,  [ 4 ] ,  ['5] s h o w  t h a t  in  a n  o s -  
c i l l a t o r y  s p i n  t h e  a n g u l a r  v e l o c i t y  in  p i t c h  i s  u s u a l l y  m u c h  s m a l l e r  t h a n  
t h e  a n g u l a r  v e l o c i t i e s  in  r o l l  a n d  y a w .  W e  t h e r e f o r e  c o n s i d e r  s o l u t i o n s  of  
e q u a t i o n s  (1) (9) f o r  w h i c h  
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o(p)=- l ,  o(q)=O, o ( r ) = - l ,  

again taking CD0 to represent first order smallness. 
We also assume 

O(C') = O, 0(/~) = -3; O ( m q / i  B) = -2,  O(nv/ ie)  = 1, 

O(v) =O(w) =O(6w) = 0 ,  

while the magnitudes of all other quantities remain unchanged from Section 
3. The change in 0 (C') and 0 (/~) are made so that these quantities are 
now more representative of modern high-speed aircraft, which have 
nearly all their mass concentrated in the fuselage, have a high wing 
loading, and fly at high altitudes. Also, it is logical to assume in the 
present case that the aerodynamic derivative mq, representing damping 
in pitch, is large, since the angular velocity in pitch has been assumed 
small. Sometimes it may be necessary to include terms involving second 
derivatives, such as ivw, and also terms involving acceleration derivatives, 
such as n~. In the present theory these terms are neglected, though they 
should be carefully investigated for any given aircraft configuration and 
conditions of flight - an account of all the relevant derivatives is given 
b y  T h o m a s  [ 6 ] .  

A first approximation to the motion is found by retaining only the terms 
of greatest magnitude in each of the equations (i) - (6). This gives 

fl - r v  = 0, (21) 

~? - p w  + r u  = 0 ,  ( 2 2 )  

~r  pv = 0, 

= V'/~lvV/iA, 

d 1 - B ' r p  = v '  (/~m w 5w+  m q q ) / i B ,  

i~ = v'/~nvV/ic. 

(23) 

(24) 

(25) 

(26) 

The kinematic equations (7) - (9) are not considered further, since they 
are now independent of equations (21) - (26), owing to the relative smallness 
of the gravitational terms. It is interesting to note that the gravitational 
terms are also negligible in a first approximation to the fast rolling motion 
of an aircraft in the case when inertia cross-coupling produces large dis- 
turbances in incidence and sideslip: see reference [7]. 

An exact solution of equations (21) - (26) is now obtained. From equations 
(21) - (23) we obtain 

V T2 -- U 2 + V 2 § W 2 -- constoj 

and  t h e r e f o r e  

V I ~ ! - l a  V O - 

T h e  a n g u l a r  v e l o c i t y  in  p i t c h  q a p p e a r s  o n l y  in  e q u a t i o n  (25);  t h i s  e q u a t i o n  
is  t h e r e f o r e  u s e d  to  f ind  q a f t e r  ihe  r e m a i n i n g  e q u a t i o n s  h a v e  b e e n  s o l v e d .  

I n t r o d u c i n g  the  n o t a t i o n  

l'v = ~iv/iA" n'v = /~nv/ic" 

equations (24) and (26) give 
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P - Po = (l'v/n'v) (r - ro). 

From equations (23) and (26), and using equation (27), 

(27) 

! v ( - n v p  ~ +l'vr 0) 1' 
~ w  = ( r - r  ~ ) - - -  (r  2 - r ~ ) .  

n' 2 2n' 2 o 
v v 

From equations (21) and (26) 

u - u  o = ( r  2 - r 2 ) / 2 n  " .  
o 

Then equation (22) becomes 

(28)  

(29)  

f, =Ar 3 + Br 2 + Cr + D, (30) 

where 

Since 

1 '2 1 
v 

, -  j 

2n' 3 2n ~ 
v v 

31"  l v r  o 

B- 2n'2 o - n, vl/ 
v 1'[ ( l ' r  o ' ) - nvP o 

C=--! v w ~ - 
n ~ n , 2  

v v 

(n'vP ~ - r r )~ 
v 0 

nr3 
v 

l ' r ~ ]  
r + v u ]  

0 2n,v2 j 

r 2 
o 

- U  0 + j 
2 n  ~ 

v 

_ (lvro - n v P  O) 

n V 2  
v 

i' r2] 
+ v p 

2n,2 
v 

= 9/n', 
v 

integration of equation (30) gives 

where 

f ~2 = a r  4 + b y  3 + c r  2 + d r  + e =- w 1 ,  s a y ,  

1 w 2 
a =-~An v, b =-~Bn' v, c = Cn'v, d = 2Dn'v, 

(31) 

e = 92 - 2 n '  v A r o  4 + 5  B r o  + 5  C r o  + D r o  0 J 

and A, B,C,D are the coefficients in equation (30). 

Integration of equation (31) gives 

lj dr 
= s g n  (9 ,,  

W ~ 
1 
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which is an elliptic integral of the first kind. Reducing this integral to the 
standard from (see Appendix I) we find in a particular case that 

ot + ~  Rcn  (Or+h) 
r -- , (32) 

1 + R c n  ( G T  + h) 

where the constants ~,fi, R,G and h are defined in Appendix i. 
Hence r oscillates between the values 

+/3R ~ - t 3 R  

- -  and 
I+R 1 -R 

the time of a complete period being 4K/G. 
Expressions for the remaining variables are 

ferentiating equation (32), we find 

!~ ( a  - f i ) R G  s n  T d n  T ,  
V - 

n v n'v(l + R cn T) 2 

whe re 

easily obtained. On dif- 

(33) 

T =G~" +h, 

while p, 6w and u are obtained from equations (27), (28) and (29) respec- 
tively. Finally, q is obtained by integration of equation (25), giving 

whe re 

.y q = e mq'~ 

0 

e"m4 s (B'rp+m~6 w) ds, (34) 

m' = m _liB, m' = #m w_li B q q w ' 

r, p and 6w are known functions of ~, and it is assumed that q=0 when 
~'=0. The integration in equation (34) is performed numerically. 

All the variables with the exception of q are seen to be periodic, while 
q has the form of a damped forced oscillation; we have therefore obtained 
an approximation to an oscillatory spin. A numerical example of the theory 
of this Section is given in Appendix 2. 

5, Conclusions 

After showing how Brodetsky's theory leads to a description of the in- 
cipient slow spin, we have obtained, by similar methods, a first approxi- 
mation to an oscillatory spin in the practical case when q is small c o m -  

p a r e d  with p and zr. The results show the expected non-linear oscillations 
in the velocities and angular velocities. 

A consideration of orders of magnitude indicates that gravitational terms 
appear in a second approximation to a fast spin; in Brodetsky's theory of 
the slow spin they appear in a firs1 approximation. The equations of motion 
representing a second approximation to a fast spin have no analytic solutions, 
so that investigations with the aid of a computer are indicated. 

Solutions by computer of the complete equations of motion in which the 
derivatives are allowed to vary with incidence often show random and con- 
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fusing motions after the initial stall- such motions are not necessarily 
incipient spins [2]. Thus extreme care is needed when interpreting the 
results of approximate analytic methods applied to spinning problems. 
However, the results of the present paper indicate that valuable information 
on at least some "aspects of the spin may be obtained by such methods. 

APPENDIX 1 

DERIVATION OF EQUATION (32) 

Referring to equation (31), let 

ar 4 +br 3 +cr 2 +dr + e = (r 2 + 2Bir + CI) (ar 2 + 2B2r +C2) , 

with BI, B2, CI, C2 all real, and where, if all the roots of w i = 0 are 
real, the roots of the quadratics do not interlace. Let kl,k 2 be the roots 
of the quadratic 

(B22 - aC2) k2 + (aC1 - 2B1B2 + C2i A.+ (B21-C1) -- 0. (35) 

Making the substitution 

t = ( r  - a ) / ( r  - ~ ) ,  (36) 

where 

a ,  ~ = - 
(B - 5,2B ) 

1 - akl. 2 

it can be shown that [8] 

dt 

(37) 

The subsequent substitutions depend on the values of k I and k 2. To 
take a definite case, we assume 

k I > 0, k 2 < 0, l-ak 2 ~ 0. 

The integral on the right-hand side of equation (37) is then 

f dt 
(- X2)�89 E(R2 - t 2) (t 2 +$2)~�89 

where 

R 2 k l ( 1 - a k 2 )  S 2 1 - a k 2  
- -  , = 

k 2 ( 1 - a k i )  1 - a k  1 

Now let 



' A p p r o x i m a t e  Theor i e s  Of The Spinning Of Ai rc ra f t  

t =-R(I -~)�89 R>O. 

245 

(38) 

Then 
dt  

f[(R t (t + 

I j du 
(1R 2 +S 2) �89 [(l-u 2) (1-k2u2)] } 

sn-lu 
- + const. 
(R 2 +S2)~ 

where 

k2 = R2/(R2+S2). 

Therefore 

f d r  
r = s g n  ( f )  

w~ 

i .e .  

( ~  - x  2) sn -1 u 
-- s g n  (~) + c o n s t . ,  

(o~-~) (1 - a k l ) ( - k 2 )  �89 (R 2 +S2)�89 

u = s n  (G~" + h) ,  (39) 

whe re 

(a - /3)(1-ak l )  (-k2)�89 (R 2 +$2)�89 
G - -  

and h is a constant of integration. 
Equation (32) now follows immediately from equations (36), (38) and (39). 

A P P E N D I X  2 

N U M E R I C A L  E X A M P L E  B A S E D  ON S E C T I O N  4 

The theory of Section 4 is illustrated by taking 

B '  = 0 . 9 ,  1 '  = - 3 0 ,  m '  = - 4 5 ,  n '  = 4 5 ,  m '  = - 10, 
v w v q 

wi th  i n i t i a l  c o n d i t i o n s  

Po = 5 . 0 ,  qo O, ro 5 . 0 ,  

u = 0 . 8 ,  v = 0 . 4 ,  w = 0 . 4 4 7 .  
O O o 

Note that 

U 2 + V 2 + W 2 = 1 .  
o o o 

The coefficients in equations (30) and (31) are 
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B = 0.1852, C = -2.8572, D = 9.8975, 

a = - 0.3611, b = 5.556, c = - 128.6, d = 890.8, 

In the notation of Appendix i, 

B i -- - 4.1785, C I = 13.43, B 2 = 1.2698, 

The roots of the quadratic equation (35) are 

~i-- 0.04104, ~2 = - 2. 7737. 

Hence 

A = - 0 . 0 1 6 0 5 ,  

e = - 1384. 

C 2 -- - 102.52. 

= 4.1689, ~ = - 414.69, R 2 = 2.308 x 10 .5 , 

S 2 = 1.560x i0 -3, k = 0.1207, G = 10.005. 

Inserting the initial conditions in equation (32), we find 

- r ~ 
cn h . . . .  0.4122, 

and since v o > 0, equation (33) shows that sn h ~ 0. Hence 

snh = 0.9111, h = 2. 0045. 

Then, from equation (32), 

4. 169 - i. 992 cn (i0. 005 ~ + 2. 0045) 

r = 

1 + 0.004804 cn (i0.005 7 + 2. 0045) 

Hence r oscillates between the values 2.167 and 6. 191. A check on the 
computation is provided by the fact that these values are the real roots of 

i ~2 (r) = 0, 

i.e. of 

r 2 + 2 Bit +C I = 0. 

The periodic time of r is 

4K/G = 0.630 airsecs. = 0.630 ~ secs. 

The remaining variables, apart from q, which is obtained numerically 
from equation (34), are given by 

u = 0.01111 r 2 + 0.5222, 

0.4474 sn T dn T 

V = 

(i + 0. 004804 cnT) 2 

6w = 0.007407 r 2 - 0.1852r + 0.7407, 

p =8.333 - 0.667 r, 
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w h e  r e  

T = 1 0 .  005  ~" + 2 .  0 0 4 5 .  

T h e  r e s u l t s  a r e  t a b u l a t e d  b e l o w  f o r  0 ~ T ~ 0 . 6 0 .  T h e  c o m p u t a t i o n  c a n ,  
of course, be extended beyond this time as long as the variables do not 
exceed their assumed orders of magnitude. 

"= (airsecs) p q r u v w 

0 
0.05 
0. i0 
0.15 
0.20 
0.25 
0.30 
0.35 
0.40 
0.45 
0.50 
0.55 
0.60 

5 
4.48 
4.22 
4.29 
4.67 
5.26 
5.92 
6.49 
6.83 
6.86 
6.58 
6.04 
5.39 

0 5 0.8 0.4 0.447 
1.02 5.78 0.89 0.27 0.37 
1.71 6.17 0.95 0.07 0.33 
2.18 6.07 0.93 -0.16 0.34 
2.38 5.50 0.86 -0.34 0.39 
2.72 4.61 0.76 -0.43 0.49 
2.03 3.62 0.67 -0.43 0.61 
1.66 2.77 0.61 -0.32 0.75 
0.92 2.26 0.58 =0.13 0.81 
0.48 2.21 0.58 0.09 0.82 
0.24 2.64 0.60 0.29 0.75 
0.41 3.44 0.65 0.42 0.64 
0.86 4.42 0.74 0.44 0.51 

N O T A T I O N  

a, b, c, d, e 

A' 

B' 

C' 

A, B, C, D 

b 

BI, CI, B2, C 2 

CD 

C L 

G 

h 

iA = 

k 

fi 

K 

m 

0 

coefficients in equation (31) 

= (B-C)/A% where A, B, C are the principal 

(C-A)/B~ moments of inertia at the 

(A-B)/CJ centre of gravity 

coefficients in equation (30) 

= sin ~o (Section 3) 

constants defined in Appendix 1 

total aircraft drag coefficient 

total aircraft lift coefficient 

constant defined in equation (39) 

constant of integration 

A/ms 2, where A is the longitudinal principal 
moment of inertia at the centre of gravity. 
Similarly for i B, i C. 

R/(IR 2 + S~) �89 modulus of elliptic functions (Ap- 
pendix 1 ) 

mg/p S V' 2 
o 

complete elliptic integral of the first kind, with 

modulus k. 

mass of aircraft 

order of magnitude 
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p, q, r 

R, S 

S 

S 

sgn  (9) 

t 

T 

U ,  V ,  W 

U 

V t 

V' 

w 1 

Of 

3' 

gw 

k l ,  k 2 
12 

P 
T 

r 

G. R. Walsh  

n o n - d i m e n s i o n a l  c o m p o n e n t s  of a n g u l a r  v e l o c i t y :  
p = P 4 ,  e t c . ,  w h e r e  P ~ Q , R  a r e  the c o r r e s p o n -  
ding dimensional quantilies 

constants defined in Appendix 1 

wing semi-span 

wing area 

• i according as P >~ 0 

auxiliary variable defined in Appendix 1 

m / p  S V' 
o 

G ~ ' + h  

non-dimensional components of velocity: 

u = U/V~, etc., where U,V,W are the corre- 
sponding dimensional quantities 

auxiliary variable defined in Appendix 1 

(u 2 + v 2 + w2) �89 non-dimensional resultant speed 

(U 2 + V 2 + W2) �89 dimensional resultant speed 

defined by equation (31) 

incidence of longitudinal principal axis 

constants defined in Appendix 1 

gliding angle 

increment in w 

attitude angle 

roots of equation (35), Appendix 1 

m/P Ss, relative density parameter 

air density 

time in airsecs. (time in seconds is ~ t) 

angle of bank 

azimuth angle 

Suffix 0 denotes the initial value of a variable. Dots denote differentiation 
with respect to ~'. 

Aerodynamic stability derivatives 
The n o n - d i m e n s i o n a l  s t a b i l i t y  d e r i v a t i v e s  a r e  r e f e r r e d  to the p r i n c i p a l  

a x e s  a t  the c e n t r e  of g r a v i t y ,  and a r e  def ined  in t e r m s  of the c o r r e s p o n d i n g  
d i m e n s i o n a l  s t a b i l i ! y  d e r i v a t i v e s  as  f o l l o w s :  

X w = P S V' X 
o 9; 

L v = P S V' sl 
o v 

L r = P S V" s21 r 

M ,  = P S s 2 m ,  

Lvw = P S s Ivw 

A l s o  

l'v = ;~Iv/iA 

m'w ="mw/iB' mq = mq/i B 

n' = ~n /i 

for force-velocity derivatives 

for moment-velocity derivatives 

for moment-angular velocity derivatives 

for moment-acceleration derivatives 
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